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The transmission of vibrations in the vicinity of a rectangular harmonic vertical load,
acting on a viscoelastic layer overlaying a rigid half-space, is investigated theoretically,
using a semi-analytic approach. The solution involves a double Fourier transform with
respect to two of the space variables of Navier’s elastodynamic equations. The inverse
double Fourier transform is achieved with the FFT algorithm. Results presented include
transformed displacements in the wavenumber domain, actual displacements in the
near-field of the load, and the direct receptance at the load.
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1. INTRODUCTION

The original motivation for the work described in this paper was concern about vibrations
caused by rail and road transport. Theoretical models which simulate the propagation of
such vibration, will be of use in optimising the application of defensive measures such as
trenches, or vibration absorbing material placed under either the source of vibration or
a protected structure. The model of the load shape and ground structure used here is
expected to more closely match experimental results for retangular loads, than a model
which maintains cylindrical symmetry, or represents the ground as a half-space.

The ground is modelled as a viscoelastic layer overlying a rigid foundation, with an
harmonic vertical load in the form of a rectangle. The load boundary condition is defined
as a force rather than a displacement, to avoid mixed boundary conditions. A double
Fourier transform is used to find the transformed displacements in the wavenumber
domain; explicit expressions for the three components of transformed displacements are
found as functions of the two transform variables, which are the wavenumbers in the two
horizontal directions.

The work presented here is a natural extension of two previous papers by two of the
present authors. In reference [1], the corresponding plane problem was studied, in which
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the load is modelled as an infinite strip acting on a layer over an inflexible foundation.
The normal modes of free vibration, which are useful for interpreting the present results
are also calculated. In reference [2], a three-dimensional problem of a rectangular load
acting on a half-space was studied. Previous work relevant to these two problems was
discussed in [1] and [2].

In most previous work involving three-dimensional modelling of the ground structure
used here, the load has been modelled as either a point or a disc, to maintain cylindrical
symmetry; see Girardi [3] for example. Recently Auersch [4] has considered a point load
acting on an elastic layer overlying a flexible half-space. The finite element method is
particularly well-suited to the ground model used in this paper, and has been used for
example by Waas [5] and Jones et al. [6]. An application of the present work is in the
verification of numerical methods such as finite elements and boundary elements, which
can then be used to study more complex ground structures.

A review of work up to 1983 has been given by Gazetas [7].

2. FOURIER TRANSFORM OF THE DISPLACEMENTS

2.1.   ’ 

The model of the ground, co-ordinate system and load are shown in Figure 1. The
rectangle has sides of length 2b and 2c, and is aligned with respect to the co-ordinate axes
as shown. It rests on an homogeneous, isotropic viscoelastic layer, with material properties
E (Young’s modulus), r (density) and n (Poisson ratio), which overlies a rigid foundation.
The layer exhibits hysteric damping characterised by a loss factor h, and as a result the
constants E, l and m (see equations (4) and (5) for the definitions of l and m) are each
multiplied by a factor (1+ ih); these constants are therefore complex. An harmonic vertical
load acts uniformly over the rectangle, and no shear stresses exist at the surface. The
behaviour of the layer is described by Navier’s elastodynamic equations (see reference [8]
Appendix A, for example). In the absence of a body force, and assuming the motion is
harmonic, one obtains the following three equations for the components of displacement
(u, v, w):

(l+ m)
1D

1x
+ m92u+ rv2u=0, (1)

(l+ m)
1D

1y
+ m92v+ rv2v=0, (2)

(l+ m)
1D

1z
+ m92w+ rv2w=0, (3)

Figure 1. Diagram of the model.
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in which l and m, the Lamé constants, are defined as

l= nE(1+ ih)/(1+ n)(1−2n), m=E(1+ ih)/2(1+ n). (4, 5)

In equations (1) to (3) 92 is the Laplacian operator, and D is the dilatation, defined by

D= 1u/1x+ 1v/1y+ 1w/1z. (6)

Differentiating equations (1) to (3) with respect to x, y and z respectively, dividing each
equation by r and summing, gives

(92 + k2
1)D=0, (7)

where k1 =v/c1 and c2
1 = (l+2m)/r. To solve equation (7) the double Fourier transform

is used and defined as

f�(b, g, z)=g
a

−a g
a

−a

f(x, y, z) e−i(bx+ gy) dx dy. (8)

With the above definition of the Fourier transform, the corresponding inverse
transform will include a factor 1/(4p2). Applying the Fourier transform to equation (7)
yields a simple differential equation for the transform of the dilatation, the solution of
which is

D� =A e−a1z +B ea1z, (9)

where

a2
1 = b2 + g2 − k2

1. (10)

Substituting equation (9) into equations (1) to (3) and applying the Fourier transform, the
resulting three equations can be expressed as

0 d2

dz2 − a2
212 ūv̄w̄3=01−

k2
2

k2
112 ib(A e−a1z +B ea1z)

ig(A e−a1z +B ea1z)
a1(−A e−a1z +B ea1z)3, (11)

where k2 =v/c2 and c2
2 = m/r, and

a2
2 = b2 + g2 − k2

2. (12)

Equation (11) was obtained using the result

(l+ m)/m= k2
2/k2

1 −1. (13)

The solution of equation (11) is

2 ūv̄w̄3= 2−ib
−ig
a1 3 A

k2
1
e−a1z + 2−ib

−ig
−a13 B

k2
1
ea1z + 2CEG3 ea2z + 2DFH3 e−a2z, (14)
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where A, B, . . . , H are functions of the wavenumbers b and g. G and H are found in terms
of the other unknowns by introducing the transform of the dilatation. Transforming
equation (6) gives

D� =ibū+igv̄+dw̄/dz. (15)

Substituting in equation (15) for the transformed displacements from equation (14), and
equating to equation (9) leads to the following expressions for G and H:

G=(−i/a2)(bC+ gE), H=(i/a2)(bD+ gF). (16, 17)

2.2.   - 

The stress-strain relations can be expressed in the form

tij = ldijD+ m(1ui/1xj + 1uj/1xi) (18)

where tij is the stress tensor, dij is the Kronecker delta, and ui and xi are the ith components
of the vectors (u, v, w) and (x, y, z) respectively. Transforming the three z components of
the stress tensor, as defined by equation (18), gives

t̄xz = m(ibw̄ +dū/dz) (19)

t̄yz = m(igw̄ +dv̄/dz) (20)

t̄zz =(lD� +2m dw̄/dz). (21)

The stress components txz and tyz are zero at the surface, while the component tzz at the
surface can be written as

tzz =z=0 =6−P/4bc
0

=x=Q b, =y=Q c
elsewhere 7 (22)

P is the total force acting on the rectangle, and is equally distributed over it. Clearly
the surface is modelled as being stress-free outside the rectangle. The Fourier
transformation of equation (22) is

t̄zz =z=0 =−P sin bb sin gc/bcbg (23)

Using equation (14) to replace ū, v̄ and w̄ in equations (19) to (21), evaluating the resulting
expressions at z=0, and using equation (23) for the component t̄zz , leads to the following
three equations:

(2ia1b/k2
1)(A−B)+ [(b2 + a2

2)/a2](C−D)+ (bg/a2)(E−F)=0 (24)

(2ia1g/k2
1)(A−B)+ (bg/a2)(C−D)+ [(g2 + a2

2)/a2](E−F)=0 (25)

0l−
2ma2

1

k2
1 1(A+B)−2mi(b(C+D)+ g(E+F))=−

P sin bb sin gc
bcbg

(26)



      311

In principle the zero displacement boundary condition at the bottom of the layer could
be used with equation (14) to generate three further equations for the six unknowns
A, B, . . . , F, which could then be solved simultaneously with equations (24)–(26).
However, this direct approach leads to formidable numerical problems. To avoid these
difficulties, the layer is divided up into several sub-layers. A dynamic stiffness matrix is
then deduced for each sub-layer and finally a global stiffness matrix for the entire physical
layer constructed.

2.3.     -

Substituting (14) into equations (19) to (21), using equations (16), (17) to replace G and
H and evaluating at z=0 and z= h gives

t̄=SA, (27)

where

t̄=(−t̄zx(0), −t̄zy(0), −it̄zz(0), t̄zx(h), t̄zy(h), it̄zz(h))T (28)

and

A=(A B C D E F)T (29)

and S is the appropriate 6×6 matrix of coefficients. The vector t̄ is defined as in equation
(28) to make the stiffness matrix symmetric.

Now evaluating equations (14) at z=0 and z= h, and using equations (16) and (17)
to replace G and H, gives

U� =TA, (30)

where

U� =(ū(0), v̄(0), iw̄(0), ū(h), v̄(h), iw̄(h))T (31)

and T is the appropriate matrix of coefficients. Combining equations (27) and (30), and
introducing the stiffness matrix C such that

C=ST−1 (32)

gives

t̄=CU� . (33)

The sub-layer stiffness matrix C was derived using the computer algebra package Maple
[9]. Equation (33) is for a single sub-layer of depth h. A global equation for n layers, such
that d= nh, can be assembled by the same process used in finite element analysis. Finally,
the boundary conditions at z=0 and z= d are applied before solving.

3. SOLUTION FOR THE TRANSFORMED DISPLACEMENT

The global stiffness matrix is diagonally dominant and allows a straightforward solution
for the vector Ū. Figures 2 to 5 show the functions ū, v̄ and w̄ plotted in the (b, g)-plane,
with the choices of parameters shown in Table 1. The material constants and layer depth
have been chosen to agree with the free vibration work described in [1], which aids
interpretation of the figures. A square load has been preferred for these transform domain
plots to emphasize the symmetry of the transformed displacements. A relatively high
frequency for ground vibration of 64 Hz has been used, because with the chosen ground
parameters this allows the development of several propagating modes in the 7 m layer,
which gives interesting behaviour in both domains.
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Figure 2. Real part of transformed horizontal displacements (ū).

Figure 3. Amplitude of transformed vertical displacements (w̄).

Figure 4. Amplitude of transformed transverse displacements (v̄).
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T 1

Parameters for Figures 2–5

Young’s modulus E (MN/m2) 269
Density r (kg/m3) 1550
Poisson’s ratio n 0·257
Damping coefficient h 0·1
Total applied force P (N) 1
Layer depth d (m) 7†
Rectangle dimension b (m) 0·3
Rectangle dimension c (m) 0·3
Frequency of excitation f (Hz) 64

† In Figure 5, d=70 m.

Figure 5. Amplitude of transformed vertical displacements (w̄), d=70 m..

Figure 2 shows the real part of the horizontal component of displacement, to illustrate
the anti-symmetry of the function, whereas Figures 3–5 show the amplitude of the
components, in order to incorporate real and imaginary parts in the same figures.

In Figure 2 one can see the real part of the component ū. This component is symmetric
with respect to the plane g=0, and anti-symmetric with respect to b=0. The peaks and
troughs are located where the value of (b2 + g2)1/2 equals the wavenumber of one of the
propagating modes in the layer, as calculated in reference [1]. In particular, one notes that
the largest peak/trough is located close to the wavenumber kR of the Rayleigh wave (for
zero damping and with the parameters used here, kR =1·67 m−1). This is to be expected
because for this combination of layer depth and frequency, the first mode is almost
identical to the Rayleigh wave. One also notes that in the region (b2 + g2)1/2 q kR , ū rapidly
approaches zero, indicating that the inverse transform integrals may be truncated.

Figure 3 shows the component w̄. Only the positive quarter-plane is shown because w̄
is symmetric with respect to both the b=0 and g=0 planes. Here one can see that the
peaks are located at (b2 + g2)1/2 2 0·5, 1·0, 1·4 and 1·7, as predicted by the free vibration
analysis [1], and that the peak close to kR is dominant.

Figure 4 shows the amplitude of the component v̄. The component is zero along the
g-axis because of its antisymmetry (the surface appears symmetric because the amplitude
is shown), and again one can see that outside the largest peak, v̄ approaches zero rapidly.
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Figure 5 should be compared with Figure 3. Both Figures show the component w̄, but
in the second one the depth of the layer is 70 m. It can be seen that for the shallower layer,
the response is composed of the natural modes, whereas the deep layer behaves like a
half-space: the large peak corresponds to the Rayleigh wave, and the peak near 1·0 on both
axes is due to the compression wave. The influence of the shear wave is lost to the eye
in the dominant Rayleigh peak.

These transform domain figures show that in layered ground with a frequency of
excitation low enough for the layer interface to have an effect, which is usually the case
in practice, it is a reasonable first approximation to only consider the Rayleigh wave, as
if the ground were a half-space. However, the wavespeeds of the other components of the
propagating disturbance would be poorly approximated by the shear and compression
wavespeeds, as the P and S waves are ‘‘replaced’’ by natural modes which are the result
of constructive interference of the body waves. In general these modes will not propagate
at the shear or the compression wavespeeds.

4. NUMERICAL INVERSE TRANSFORMATION AND VERIFICATION OF RESULTS

To compute the inverse Fourier transform accurately using the Fast Fourier Transform
(FFT) algorithm, the integrals must be truncated at sufficiently high values to avoid
distortion of the results by aliasing, while the mesh of calculated function values must be
fine enough to represent well the detail of the functions seen in Figures 2 to 5. It was found
that an FFT over a grid of 2048 points by 2048 and a range of −16 Q b, gQ 16 satisfied
both these requirements. In the absence of comparable studies in the literature to verify
the results, an alternative method of computing the inverse transform was used. Along the
line y=0 and for z=0 it is convenient to use Filon’s method of integrating oscillating
integrals (see [10] for example). Figure 6 shows a comparison of results using the FFT and
Filon’s method with the parameters given in Table 2. These parameters were chosen for
an eventual comparison with a finite element model, which has yet to be performed. To
show the comparison in detail, the results have been ‘‘clipped’’ to a maximum value
of 2·0×10−9 m; the maximum value at the centre of the load (not shown) was
23·2×10−9 m.

Figure 6. Comparison of two numerical methods using data in Table 2; ——, FFT; *, Filon method.
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T 2

Parameters for Figure 6

Young’s modulus E (MN/m2) 46
Density r (kg/m3) 1700
Poisson’s ratio n 0·25
Damping coefficient h 0·05
Total applied force P (N) 1
Layer depth d (m) 9.6
Rectangle dimension b (m) 0.48
Rectangle dimension c (m) 0.48
Frequency of excitation f (Hz) 10

5. DISPLACEMENTS NEAR THE RECTANGULAR LOAD

The results presented in this section, which were all calculated using the FFT, are for
the ground parameters shown in Table 1, but with a rectangular load of dimensions
b=0·75, c=0·125. They can be divided into three groups: (1) the amplitudes of vertical
and horizontal components of displacements along the surface for y=0, and for the
frequencies 16 Hz and 64 Hz (Figures 7 to 10); (2) the direct receptance at the centre of
the rectangle (Figure 11); and (3) the amplitudes of horizontal and vertical components
of displacements over the (x, y)-plane, plotted as surfaces, for 16 and 64 Hz and up to 25 m
from the load (Figures 12 to 15). The two frequencies were specifically chosen because of
the ground parameters used here: 16 Hz is close to the first resonant frequency of the layer,
as predicted by the free vibration analysis [1], and as can be seen from the receptance graph
in Figure 11, and 64 Hz is high enough to allow the development of several propagating
modes in the layer, leading to constructive and destructive interference. Figure 7 shows
the amplitude of the horizontal component up to 10 m from the load. This component is
zero at the centre of the load, and reaches a maximum at the load edge, 0·75 m from the
centre. The resonant frequency 16 Hz produces greater displacements in the near-field than
64 Hz, while the higher frequency produces a wavy profile because of interference of the
propagating modes; this interference is more easily seen in Figure 8, which is the same as
Figure 7 but over 50 m. Here one can see that destructive interference results in a near-zero
response for 16 Hz about 21 m from the load.

Figure 7. Horizontal displacements along y=0 for 16 and 64 Hz over 10 m; ——, 16 Hz; (——(, 64 Hz.
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Figure 8. Extension of Figure 7 to 50 m. Key as Figure 7.

Figure 9. Vertical displacements along y=0 for 16 (——) and 64 ((——() Hz over 10 m.

Figure 10. Extension of Figure 9 to 50 m. Key as Figure 9.
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Figure 11. Direct vertical receptance for the rectangular load; the points marked with an asterix show the data,
joined by straight line segments.

Figure 12. Amplitude of horizontal displacements (component u) for 16 Hz, ‘‘clipped’’ to show detail.

Figure 13. Amplitude of vertical displacements (component w) for 16 Hz, ‘‘clipped’’ to show detail.
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Figure 14. Amplitude of horizontal displacements (component u) for 64 Hz, ‘‘clipped’’ to show detail.

Figures 9 and 10 are equivalent to the two preceding figures, but show the amplitude
of the vertical component. As might be expected for a vertically acting load, the vertical
response is the largest component. The maximum response is near the centre of the load,
and the load edge corresponds to a sharp decrease in amplitude. The response for 16 Hz
dominates that for 64 Hz in the near-field, but Figure 10 shows that the interference of
the propagating modes results in a region about 17 m from the load where the response
to 64 Hz is the greater of the two. At 64 Hz five propagating modes exist, compared with
only two at 16 Hz, which explains the greater waviness of the higher frequency response.

Figure 11 shows the direct receptance at the centre of the load, i.e. the amplitude of the
vertical component at the origin. Two resonance peaks are evident. It was shown in
reference [1] that the larger one corresponds to the phenomenon of two modes sharing the
same wavenumber at that frequency, whilst the second peak near 44 Hz is caused by the
fourth mode propagating with two distinct wavenumbers for a small frequency range near
44·8 Hz. It should be noted that both features are a result of the boundary condition of
zero displacement at the bottom of the layer. Such behaviour could only be expected in
practice in the case of a layer overlying a very much stiffer foundation.

Figures 12 to 15 show the vertical and horizontal components of displacement as
surfaces. These figures have been ‘‘clipped’’ to show more detail. The actual maxima are,
in the order they appear, 0·79, 5·90, 0·78 and 4·62, all ×10−9 m. Comparing these last four

Figure 15. Amplitude of vertical displacements (component w) for 64 Hz, ‘‘clipped’’ to show detail.
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figures, it is clear that the near-resonant frequency 16 Hz produces a much larger response
near to the load than 64 Hz. The two figures for 64 Hz show the pattern of peaks and
troughs produced by interference of the propagating modes. In Figures 12 and 14, which
show the horizontal component at the two frequencies, the response is zero along the line
x=0, as required physically.

6. CONCLUSIONS

A theoretical model of ground vibrations caused by an harmonic, vertical and
rectangular load acting on a viscoelastic layer over a rigid foundation has been developed.
Results produced with the model have been verified by computing the inverse Fourier
transforms of the exact expressions for the transformed displacements using two distinct
methods, the Fast Fourier Transform and Filon’s method. The results presented show the
form of the transformed displacements, the amplitudes of the components of actual surface
displacements along the line x=0, and also plotted as surfaces over the (x, y) plane, and
the direct receptance of the rectangular load. Resonance and interference features have
been explained with reference to an earlier free vibration analysis of the propagating modes
in the layer.
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